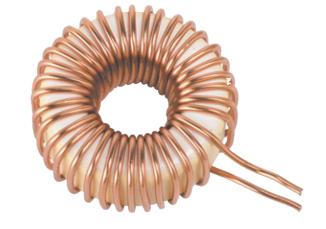
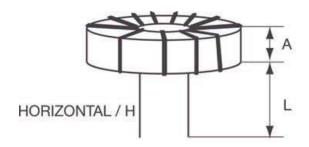
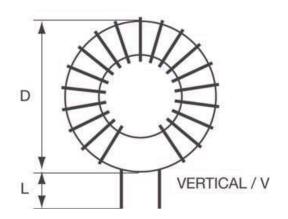

S E L F S TORIQUES

SELFS TORIQUES

Les selfs toriques en poudre de fer sont les composants inductifs idéaux pour la conception et la fabrication de convertisseurs DC / DC ou de sources d'alimentations AC/DC commut.es, ainsi que pour les

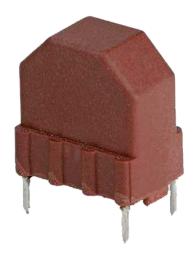

applications de filtrage réseau, les filtres interférentiels .électromagnétiques et les selfs bassefréquence.

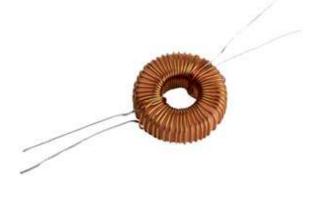

Leurs principales caractéristiques sont:


- * Faible dispersion du champ magnétique, limitant au minimum les champs rayonnés.
- * Haute efficacité., permettant la filtration ou le stockage d'énergie dans un espace minimum.
- * Faible niveau de perte sur toute la plage de fréquences de fonctionnement.
- * Haute stabilité avec différentes températures avec une marge de -50.C
- . +90.C.
- * Gamme de hautes fréquences de 10Khz.à150Khz.

La famille se compose de 27 valeurs d'inductance différentes correspondant aux valeurs normalis.es des composants électroniques passifs, et de 11 noyaux différents, obtenant ainsi 297 références différentes permettant de répondre à toutes les exigences.

Nous pouvons fabriquer d'autres valeurs inductives spéciales, m.me d'autres types de noyaux de tailles différentes, conformément aux spécifications de chaque client.





Dimensiones (mm.) Dimensions (mm.)					
Referencia Reference	D	A	L		
1305	15	7	30		
1307	16	10	30		
1706	20	8	30		
2006	23	9	30		
2010	23	14	30		
2408	27	11	30		
2711	32	14	30		
3311	37	15	30		
3915	44	20	30		
4715	52	21	30		
5122	57	28	30		

	INTENSIDAD SEGÚN MODELO/INTENSITY DEPENDIG OF TYPE										
L (uH)	1305	1307	1706	2006	2010	2408	2711	3311	3915	4718	5122
10	4.7	6.3	9.4	11.8	16.7	16.1	21.0	28.3	40.4	56.6	80.0
12	4.3	5.8	8.6	10.8	15.3	14.7	19.2	25.8	38.9	51.6	73.0
15	3.8	5.2	7.7	9.7	13.7	13.7	17.1	23.1	32.9	46.2	65.3
18	3.5	4.7	7.0	3.3	12.5	12.0	15.6	21.1	30.1	42.2	59.6
22	3.2	4.3	6.3	8.0	11.3	10.9	14.1	19.1	27.2	38.1	53.9
27	2.8	3.9	5.7	7.2	10.2	9.8	12.8	17.2	24.6	34.4	48.7
33	2.6	3.5	5.2	6.5	9.2	8.9	11.6	15.6	22.2	31.1	44.0
39	2.4	3.2	4.8	3.0	8.5	8.2	10.6	14.3	20.4	28.6	40.5
47	2.2	2.9	4.3	5.5	7.7	7.4	9.7	13.1	18.6	26.1	36.9
56	2.0	2.7	4.0	5.0	7.1	6.8	8.9	12.0	17.1	23.9	33.8
68	1.8	2.4	3.6	4.5	6.4	6.2	8.1	10.9	15.5	21.7	30.7
75	1.7	2.3	3.4	4.3	3.1	5.9	7.7	10.3	14.7	20.7	29.2
82	1.6	2.2	3.3	4.1	5.8	5.6	7.3	9.9	14.1	19.8	27.9
100	1.5	2.0	3.0	3.7	5.3	5.1	6.6	8.9	12.8	17.9	25.3
120	1.3	1.8	2.7	3.4	4.8	4.7	6.1	8.2	11.7	16.3	23.1
150	1.2	1.6	2.4	3.1	4.3	4.2	5.2	7.3	10.4	14.6	20.7
180	1.1	1.5	2.2	2.8	3.9	3.8	4.9	6.7	9.5	13.3	18.9
220	1.0	1.4	2.0	2.5	3.5	3.4	4.5	6.1	8.6	12.6	17.1
270	0.9	1.2	1.8	2.3	3.2	3.1	4.0	5.4	7.8	10.8	15.4
330	0.8	1.1	1.6	2.1	2.9	2.8	3.7	4.9	7.0	9.9	13.9
390	0.7	1.0	1.5	1.9	2.7	2.6	3.4	4.5	6.5	9.1	12.8
470	0.7	0.9	1.4	1.7	2.4	2.3	3.1	4.1	5.9	8.3	11.7
560	0.6	0.9	1.2	1.6	2.2	2.1	2.8	3.8	5.4	7.6	10.7
680	0.6	0.8	1.1	1.4	2.0	1.9	2.5	3.4	4.9	6.9	9.7
750	0.5	0.7	1.1	1.4	1.9	1.8	2.4	3.3	4.7	6.5	9.2
820	0.5	0.7	1.0	1.3	1.8	1.8	2.3	3.1	4.5	6.2	8.8
1000	0.5	0.6	0.9	1.2	1.7	1.6	2.1	2.8	4.0	5.7	8.0

NOYAUX TORIQUES

CARACTÉRISTIQUES

Les noyaux toriques que fabrique Torivac sont construits à partir de tôle magnétique d'alliages de fer-silicium, de grain orienté, de très faibles pertes et grande induction de saturation qui, traités thermiquement, améliorent la perméabilité magnétique d'approximativement 40%.

Les qualités de tôles utilisées sont celles de type M4 ou M5, selon les différentes applications.

Tous les noyaux vont soudés afin de l'enroulement, pour éviter de possibles vibrations, et postérieurement isolés à l'aide de capsules de polyamide-6 avec 30% de fibre de verre, idéaux pour supporter des températures proches aux 150oC.

Α	В	С	WEIGHT (KG)	CM ₂
60	40	20	0.235	2
60	40	25	0.293	2.5
60	40	30	0.352	3
60	40	35	0.411	3.5
65	40	20	0.307	2.5
65	40	25	0.400	3.13
65	40	30	0.480	3.76
65	40	32	0.512	4
70	40	20	0.386	3
70	40	22	0.425	3.3
70	40	25	0.483	3.75
70	40	32	0.618	4.8
70	45	22	0.365	2.75
70	45	25	0.415	3.13
75	40	13	0.314	2.28
75	40	15	0.362	2.63
80	50	25	0.570	3.75
80	50	30	0.684	4.5
80	50	35	0.798	5.25
80	50	40	0.912	6
85	40	13	4.280	2.93
90	50	20	0.652	4
90	50	22	0.717	4.4
90	50	25	0.815	5
90	50	30	0.978	6
95	50	40	1.527	9
100	60	25	0.940	5
100	60	30	1.130	6

			PESO (KG)	
Α	В	С	WEIGHT (KG)	CM ₂
100	60	35	1.318	7
100	60	38	1.430	7.6
100	60	40	1.500	8
101	55	25	1.050	5.75
101	55	30	1.260	6.9
101	55	35	1.058	8.05
101	55	38	1.148	8.74
101	55	40	1.208	9.2
105	65	35	1.392	7
105	65	45	1.790	9
108	48	20	1.095	6
108	58	25	1.215	6.25
108	58	30	1.458	7.5
108	58	38	1.847	9.5
108	58	40	1.944	10
108	58	45	2.187	11.3
135	70	35	2.728	11.4
135	70	40	3.118	13
135	70	45	3.507	14.63
135	70	50	3.897	16.3
135	70	53	4.130	17.2
140	70	70	6.025	24.5
150	75	35	3.455	13.13
150	75	40	3.950	15
150	75	45	4.444	16.9
150	75	50	4.937	18.8
150	75	60	5.925	22.5
150	75	75	6.912	26.3